In a fire-resistant structure, uncertainties arise in factors such as ventilation, material elasticity modulus, yield strength, coefficient of thermal expansion, external forces, and fire location. The ventilation uncertainty affects thefactor contributes to uncertainties in fire temperature, subsequently impacting the structural temperature. These temperatures, combined with material properties, give rise to uncertain structural responses. Given the nonlinear behavior of structures under fire conditions, calculating fire fragility traditionally involves time-consuming Monte Carlo simulations. To address this, recent studies have explored leveraging machine learning algorithms to predict fire fragility, aiming to enhance efficiency while maintaining accuracy. This study focuses on predicting the fire fragility of a steel moment frame building, accounting for uncertainties in fire size, location, and structural material properties. The fragility curve, derived from nonlinear structural behavior under fire, follows a log-normal distribution. The results demonstrate that the proposed method accurately and efficiently predicts fire fragility, showcasing its effectiveness in streamlining the analysis process.